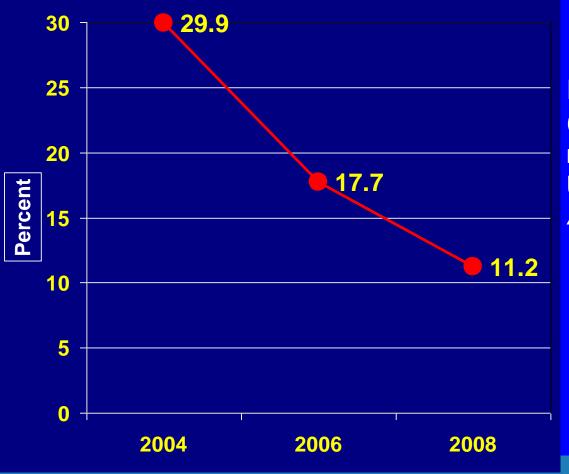
Measuring HIV incidence: Where are we?: Update on HIV incidence assays

Txema Calleja HIV/SIP WHO

Overview of presentation

- Methods for estimating HIV incidence
- Issues related to incidence assays
- New incidence assay developments
- Conclusions

Methods for approximating population incidence trends


- Method 1: Prevalence trends among young adults (aged 15-24 years)
 - Used as a proxy for <u>incidence trends</u> in the general population as prevalent infections are likely to be recent infection in this group.
 - Selection bias: HIV infections in 15-24 population may not be reflective of new infections in country.
 - In Concentrated epidemics new injectors or young MSM

Method 2: Mathematical modeling

- Easy to use and inexpensive
- Requires assumptions about mortality which may not be available.
- DHS analysis

HIV among new injectors in Ukraine:

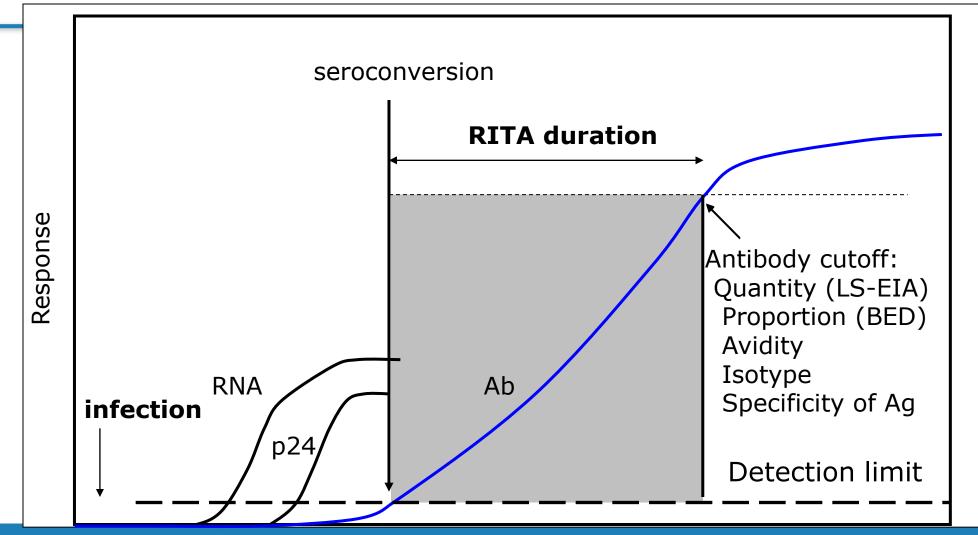
HIV prevalence among recent IDUs (less then 2 years of injection drugs), median. sentinel surveillance 8 cities, Ukraine - *International HIV/AIDS Alliance, 2009*

Methods for approximating population incidence trends

Method 3: Laboratory assays

- Simple, fast, low cost (applied to HIV+ only).
- Overestimates incidence due to assay: (non-progressors, AIDS,ART) who misclassify as recent infection on the assay even though they have been infected for many years.

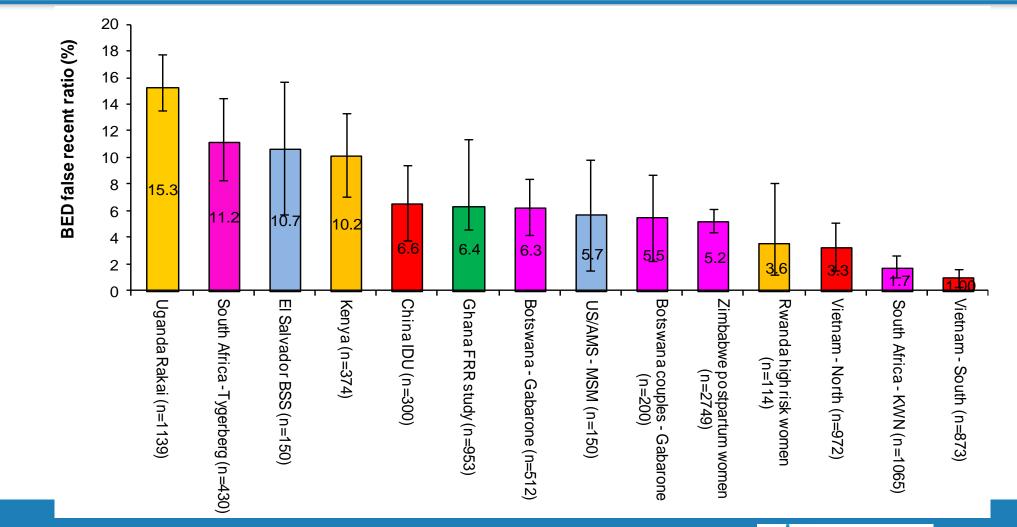
Method 4: Prospective cohort studies


- "Gold standard" measure of incidence
- Costly, logically difficult to implement, prone to bias

HIV incidence assays

Recent Infection Testing Algorithm (RITA): based in Antibody response

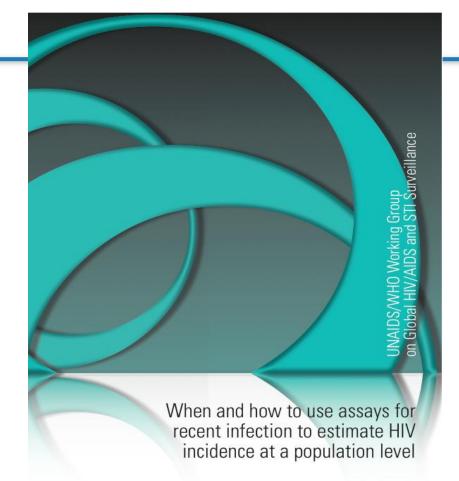
FROM DETUNED TO RITA


19	95	1998	200	0 2002	2 20	03 200	94/5 20	006/7	2008	2010	2011		
	Detuned		SAL	_SA	STARF	IS				RITA		CEPHIA	
		longo										project launched	
		Jansse Jama- detune				ostika ned assay		Vitros, Bio- rad avidity		LAg assay		Architect avidity	
P2 for		paper	paper AxSYM avidity,			RT-LS IDE-V Anti-p		3 Mole appr					
	incidence			BED		, P					es		
					_			oronto Al eeting -\					
			Ad-hoo incider	nce		UNAID: stateme	ent fo	orking gi rmed – f	unders		tical pa termine		
			meetin around	AIDS			pr	start to support projects.					
conferences 8 08 November 2012								Laboratory and statistical workshops			World Health Organization		

Challenges to Using Antibody Maturation to Identify Recent Infection

- Variable immune response among individuals
 - Antibody response related to viral level
- Variability by HIV-1 subtypes
- False-recent status
 - Elite controllers (low viral levels)
 - Accumulate in population
 - ART use (low viral levels)
 - Advanced HIV disease (AIDS)

BED CEIA: False Recent Rates Vary by Setting



When and how to use assays for recent infection to estimate HIV incidence at a population level

Provided guidance on use of RITAs, false recent rates, and sample sizes.

www.who.int/diagnostics_laboratory/links/hiv_in cidence_assay

Overestimation problems and solutions

SACEMA

- South African Department of Science and Technology/ National Research Foundation Centre for Epidemiological Modeling and Analysis
- Tools
 - Incidence from recent infection biomarkers
 - Incidence from prevalence and mortality

www.incidence-estimation.com

New incidence calculator tools

Incidence Calculator		Inputs	Outputs			
Calculates point estimate and confid	ence intervals for Inc	idence and Annual F	isk of Infec	tion		
TRI/Assay Characteristics						
Estimated Mean Window Period (day	(s)	155				
CoV (Coefficient of Variation) of Mean	n Window Period Es	timate 10.0%				
Estimated FPR (False Positive Rate	= 1 minus specificit	(y) 3.0%				
CoV of FPR Estimate		25.0%				
Sample Counts						
HIV negative		10000				
HIV positive		1000				
TRI positive (i.e. classified recent)		100				
Total sample size		11000				
Estimated Incidence						
Instantaneous incidence (95% Confid	lence Interval)	1.70%	(1.04%	- 2.36%)
CoV of incidence		19.84%				
Annual Risk of Infection (95% Confid	ence Interval)	1.69%	(1.03%	- 2.33%)

Available at: <u>http://www0.sun.ac.za/sacema/collaboration/ABIE/</u>

New incidence calculator tools (cont):

A	В	С	D	E	F	L	Μ	N	Z	AA	AB	AX	BB	BC	BD	BF	BG
	TRI Incidence and Prevalence Calculator																
	1																
Let:	T = To	tal # pe	ersons	tested													
	N = #	person	s HIV n	egative	9												
	P = #	person	s HIV p	ositive													
			s teste														
			s recen														
					ow peri												
								d w. S	Specify Io	ower and	l upper lir	nits					
					ent rate												
	CI FRF	R = 959	% confi	dence	interval	for FR	R. Spe	cify lo	wer and	upper lir	nits.						
												n the 'Report	ted Mean w	and 95% C	l' worksheet		
2. The FRR																	
3. The CI FF																	
4. Incidence														idence			
from Cross-	Sectiona	al Surve	eys Usi	ing a Te	est for H	Recent	Infecti	on." A	IDS Res	Hum Re	etroviruse	es 25(1): 125	-126.				
	INPUT Y					OUR DATA HERE						PRE	VALENCE	AND INCIDE	NCE CAL	CULATIONS	
Population	Т	N	P	Q	R	w ¹	CI	w	FRR ²	CLE	FRR ³	Prevalence	CI Prev	alence	Incidence ⁴	CI Inc	idence
Example	10000	9000	1000	900	100	197	173	229	0.0520	0.0440	0.0610	10.00%	8.45%	9.58%	1.28%	0.76%	1.80%

*To belavailable&Novembee2042.net

Current Status of LAg-Avidity Assay

- Available as a commercial kit
- Similar mean recency period in 4 different subtypes
- Low FRR (~1-2%)
- Multiple validation studies with promising results
- LBPE27 (Track C): Performance of new LAg-Avidity EIA to measure HIV-1 Incidence in a cross-sectional population:

Swaziland HIV Incidence Measurement Survey (SHIMS)

Mean recency period (in days) for LAg-Avidity EIA by cohort/subtypes (cutoff 1.0)

Cohort	No. of Subjects (No. Spec)	HIV-1 Subtypes	Mean Recency Period (95% CI)
Amsterdam & Trinidad	32 (170)	В	132 (104-157)
Ethiopia	23 (143)	С	139 (106-178)
Kenya	34 (80)	A, D	143 (103-188)
ALL	89 (393)	A, B, C and D	141 (119-160)

Mean window periods are similar among different subtypes and populations

Consortium for the Evaluation and Performance of HIV Incidence Assays (CEPHIA)

Development of specimen repository and evaluation of assays for identification of recent HIV infection and estimation of HIV incidence

Country examples of national incidence activities

Triangulation of methods: Kenya AIDS Indicator survey*

	EPP/Spectrum	derived	(3) BED- derived
	incidence	incidence	incidence*
Kenya '07	0.72 (0.70, 0.74)	0.7 (0.3, 1.1)	0.6 (0.1, 1.3)

*Exclusion of persons on ART and with low CD4 cell count. Corrected using an assumed false recent rate of 15% based on validation data from the 2007 KAIS and samples from neighboring Uganda

(Andrea Kim IAC 2010)

Summary

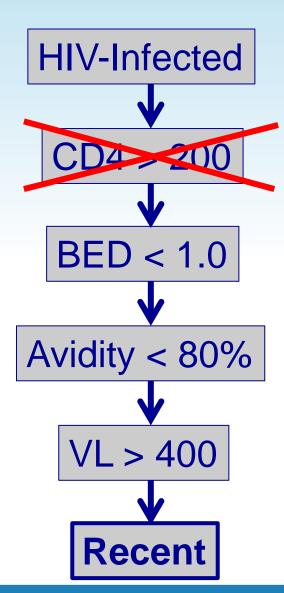
- New promising approaches to detect recent HIV infections are in development
- Combining two different methods, based on two different principles, significantly improves predictive value and accuracy of incidence estimates
- WHO Working Group sub-committee on guidance for using HIV case surveillance data
- Current requirements for assay-derived estimates
 - Estimate a FRR to calibrate your incidence estimates
 - Measure and exclude ART use in the population
 - Appropriate sample sizes for FRR and incidence survey
 - Triangulate with other sources of incidence
- . More in the HIV incidence working group page....

Acknowledgments

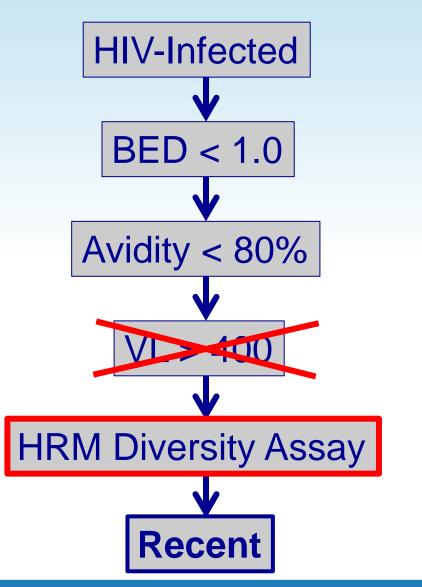
- Oliver Laeyendecker
- Sue Eshleman
- Matt Cousins
- Bharat Parekh
- Yen Duong
- Andrea Kim
- Joyce Neal
- Buzz Prejean
- Irene Hall

- Charles Morrison
- Paul Feldblum
- Karine Dube
- Pai Lien Chen
- Alex Welte
- Tom McWalter
- Gary Murphy

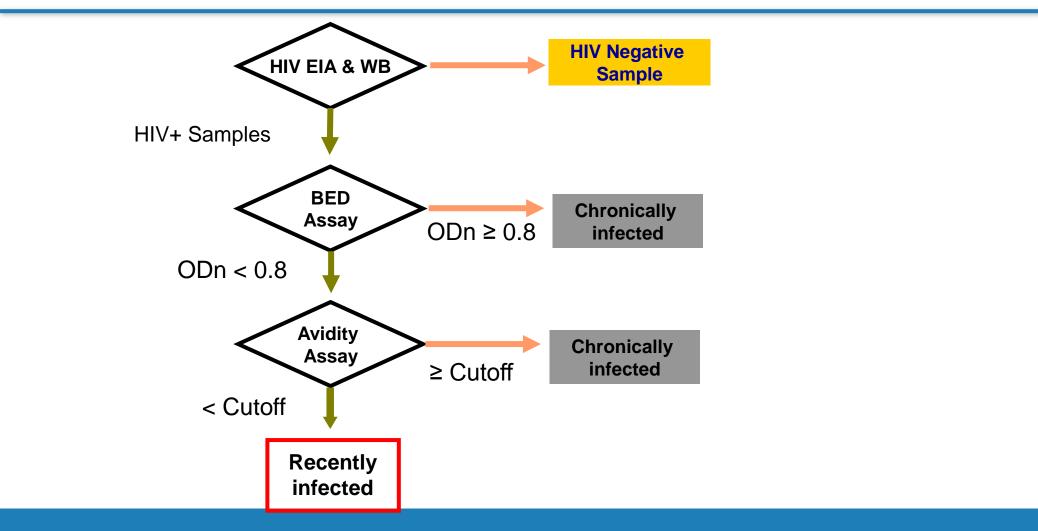
Thank you!



Extra Slides



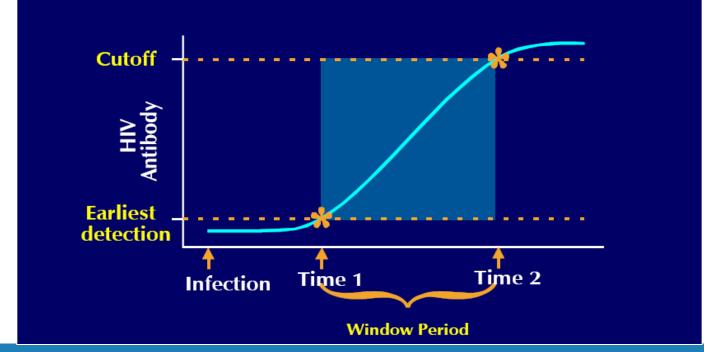
Current MAA


Next Generation MAA

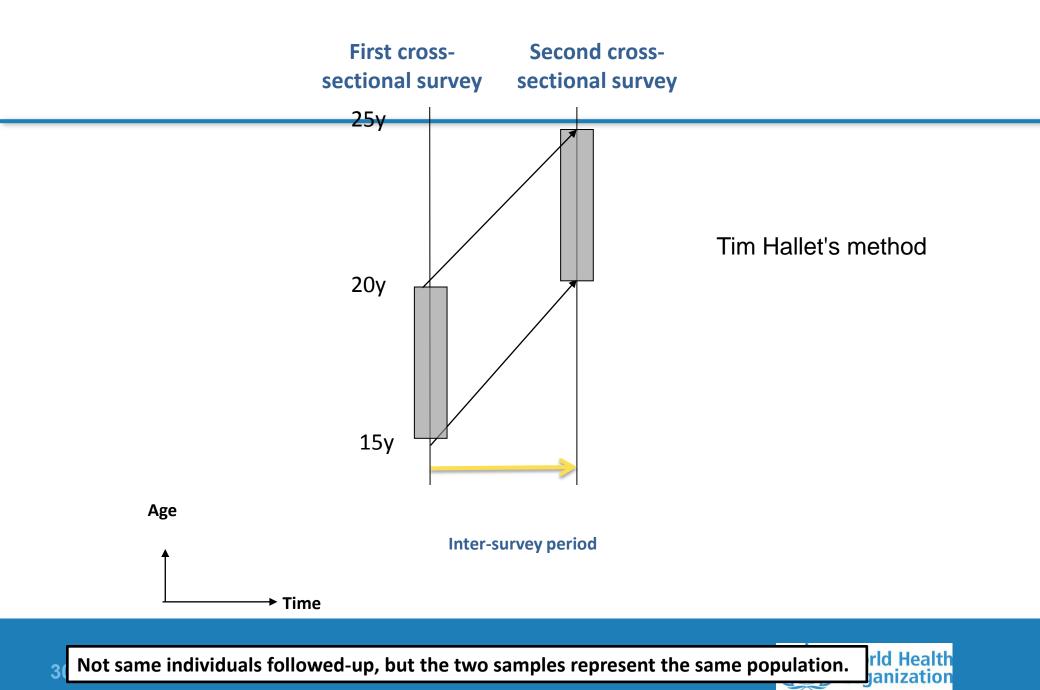
Comparison of HIV incidence Estimates

Study	Analysis	Estimated annual incidence (95% CI)				
HIVNET	Longitudinal 12-18 months	1.04%	0.70 – 1.55%			
001/001.1						

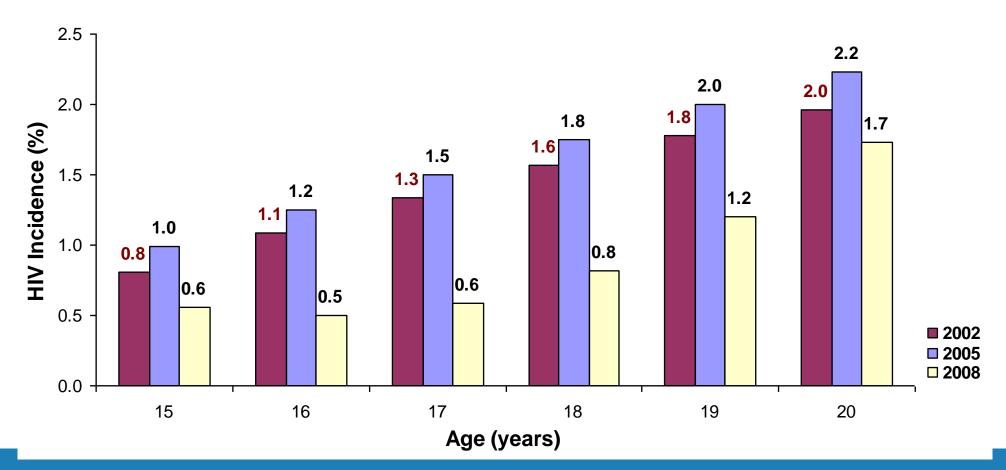
Two-test algorithm for incidence estimation

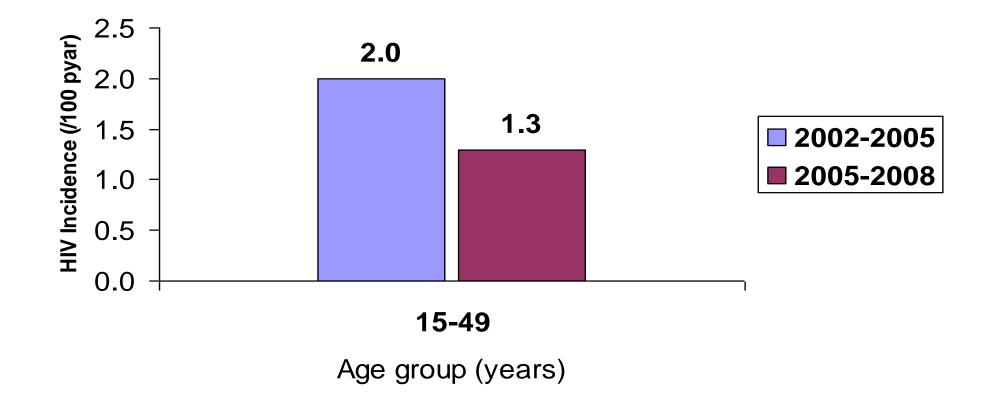

Estimating a local false-recent rate

- Estimation of a local FRR is essential for all incidence assays with expected FRR > 1%
- In general, the FRR for a population should be reviewed at regular intervals (at least every 5 years), to take into account any change in the population characteristics, which may affect the false recent rate.
- When is the FRR too high for use?
 - The higher the FRR, the higher the uncertainty of the incidence estimate. Efforts should be made to estimate the FRR with an acceptable level of certainty around the estimate (e.g. a coefficient of variance ~30%)

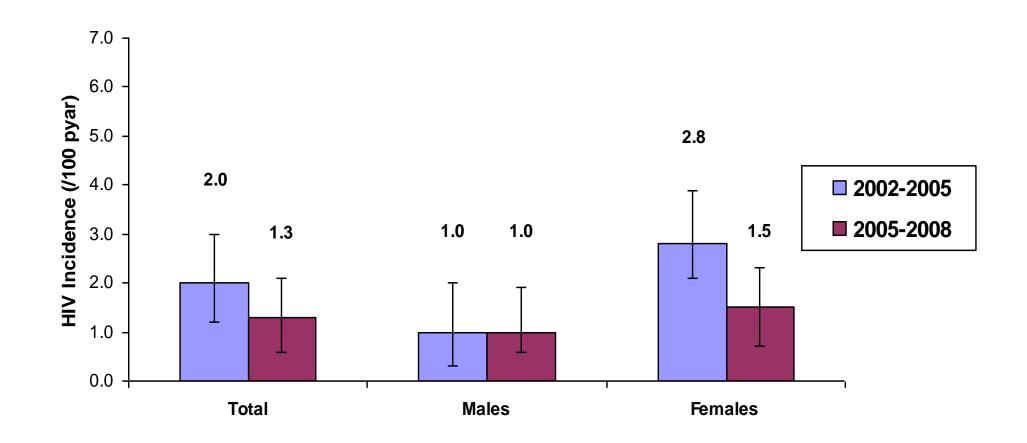


Mean Recency Period for incidence assay


- Period it takes for newly HIV infected individuals to pass from "recent" HIV infection to "established" HIV infection on an incidence assay
- The mean recency period (MRP) for an assay is incorporated into the incidence formula (denominator) to calculate an annual incidence rate.



HIV incidence in 15-20 year olds derived from single year age prevalence South Africa 2002, 2005, 2008



HIV incidence (/100 pyar), 15-49 age group South Africa 2002-2005 and 2005-2008

HIV incidence (/100 pyar), 15-49 age group South Africa 2002-2005 and 2005-2008

