

Pan American Health Organization

World Health Organization

REGIONAL OFFICE FOR THE Americas

Recommedations

- Please turn off your microphones
- The presentation will be one hour with additional time for questions
- Please send questions in writing, via Webex chat or email infectioncontrol@paho.org
- The presentation will be available on PAHO website in 48 horas at: http://www.paho.org/hq/index.php?option=com_topics&view=article&id =342&Itemid=40930&Iang=en

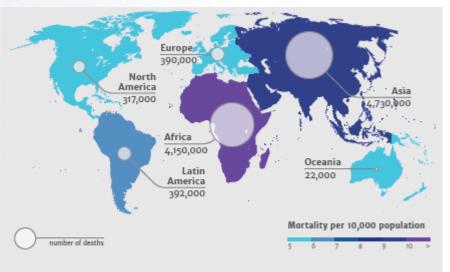
Acknowledgement

This webinar is made possible thanks to the auspice and cooperation of the Infection Control Center(CDC), under agreement CDC-RFA-CK13-1302. "BUILDING CAPACITY AND NETWORKS TO ADDRESS EMERGING INFECTIOUS DISEASES IN THE AMERICAS"

"Antimicrobial Resistance: From Laboratory to Patient Care

Regional Infection Prevention and Control WebEx Sessions Washington DC, 10 July 2018

Marcelo Galas Specialist, Antimicrobial Resistance Surveillance Communicable Diseases and Health Analysis (CHA). OPS/OMS galasmar@paho.org



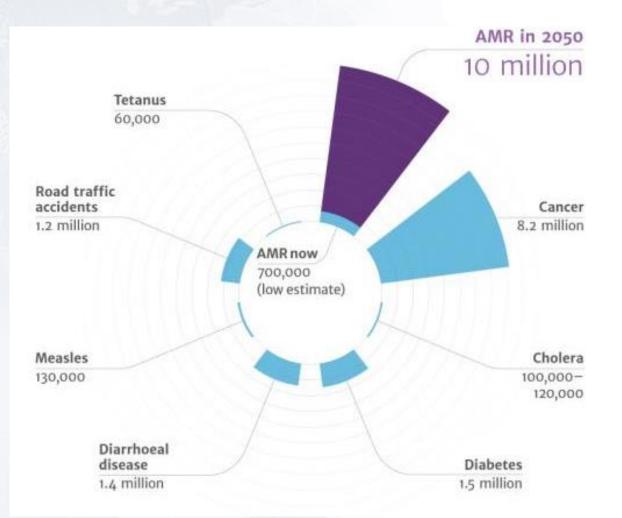
Increasing Awareness and Political Commitment

Mortality and Economic Impact

- In 2050, up to 10 million deaths/year
- 2-3.5 percent reduction of GDP
- Total global cost of up to \$USD 100 billion

Deaths Associated to AMR each year until 2050

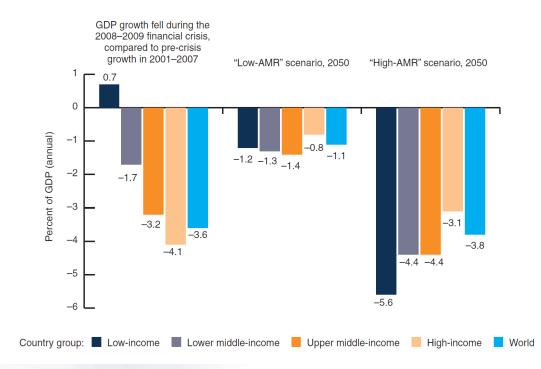
J. O'Neil, 2014. Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations.


Global Action Plan for Antimicrobial Resistance

Deaths attributable to AMR by 2050

Final Report

DRUG-RESISTANT **INFECTIONS**


A Threat to Our Economic Future

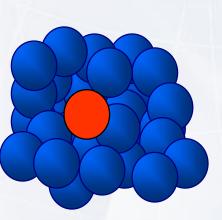
March 2017

WORLD BANK GROUP

WORLD BANK GROUP Economic Costs of AMR May Be as Severe as During the Financial Crisis

AMR could reduce GDP substantially-but unlike in the recent financial crisis, the damage could last longer and affect low-income countries the most (annual costs as % of GDP)

The full report is available at worldbank.org/health.



World Health Organization REGIONAL OFFICE FOR THE Americas

Selection and dissemination of resistance to antibiotics

Emergence and selection of resistance

Dissemination of resistance

Bacterial population with pre-existing resistant mutations

Genetic mechanisms of emerge and dissemination of resista

Random changes in genes Specific generation of mutations

Acquisition of new genes Horizontal Transfer

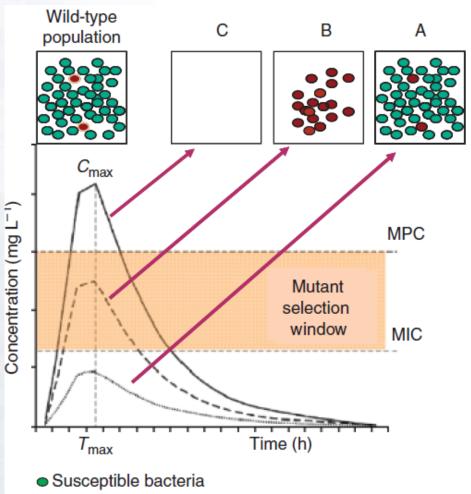
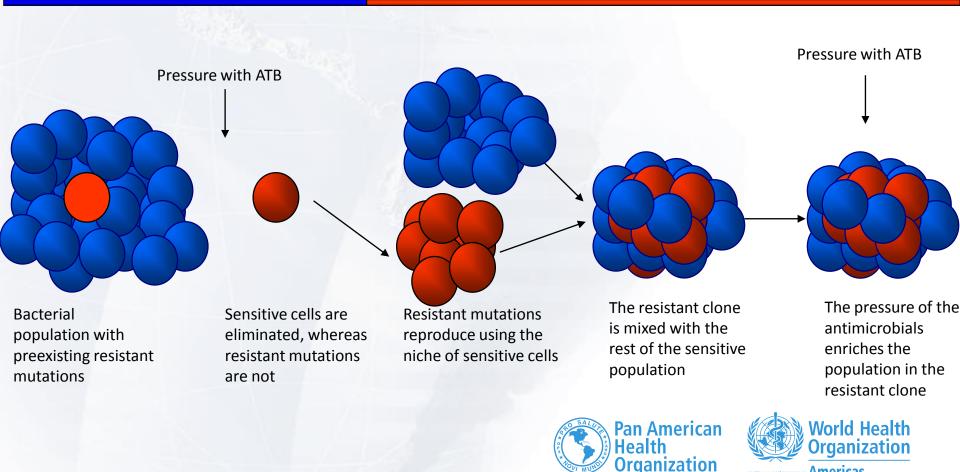

PK/PD - AMR Selection

Table 1. MPC values of different antibiotics against different organisms.

Microorganism	Antibiotic	MIC _{so} (mg1 ⁻¹)	MPC _{so} (mgl ⁻¹)	Reference
Pseudomonas acruginosa	Ciprofloxacin	0.12	2	Cantón et al. (2003b)
	Levofloxacin	0.25	B	
	Ceftazidime	z	32	
Pseudomonas acruginosa	Imipenem	z	32	Credito et al. (2010)
	Meropenem	0.5	в	
	Doripenem	0.5	4	
Escherichia coli	Nalidixic acid	1.5	32	Hansen et al. (2006)
	Ciprofloxacin	0.012	0.3	
Escherichia coli	Imipenem	0.25	0.5	Credito et al. (2010)
	Meropenem	0.03	0.06	
	Doripenem	0.03	0.125	
Streptococcus pneumoniae	Levofloxacin	1*	2*	Homma et al. (2007)
	Moxifloxacin	0.125*	0.5*	
Staphylococcus aureus	Ciprofloxacin	0.3*	41	Zhao et al. (2003)
	Levofloxacin	0.121	2'	

Cantón R and Morosini MI. FEMS Microbiol Rev 35 (2011) 977–991

Resistant mutant

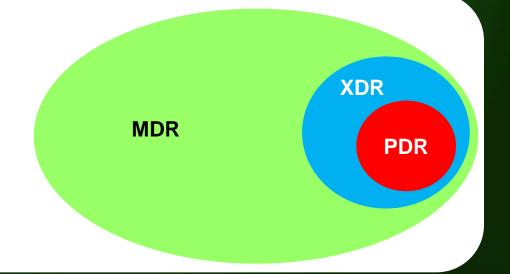


Selection and Dissemination of Antibiotic Resistance

Appearance and Selection of Resistance

Dissemination of Resistance

REGIONAL OFFICE FOR THE Americas


DEFINITIONS

MUlti-Resistance: Non sensitive to at least one agent in three or more antimicrobial categories

Extreme Resistance: Non sensitive to at least one agent in all categories except in two or less

Pan-Resistance: Non sensitive to any agents in the antibiotic categories

Non multi-resistant: Includes isolated not sensitive in at least ONE ATB in ≤ 2 antibiotic categories

in millingen hinde et de sen de s

Human XDR and PDR pathogens in the Americas

Enterobacteria

Acinetobacter spp

P. aeruginosa

Priority Pathogens for R&D of new antibiotics - WHO

Priority 1: CRITICAL

Acinetobacter baumannii, carbapenem-resistant

Pseudomonas aeruginosa, carbapenem-resistant

Enterobacteriaceae, carbapenem-resistant, 3rd generation cephalosporin-resistant

Priority 2: HIGH

Enterococcus faecium, vancomycin-resistant

Staphylococcus aureus, methicillin-resistant, vancomycin intermediate and resistant

Helicobacter pylori, clarithromycin-resistant

Campylobacter, fluoroquinolone-resistant

Salmonella spp., fluoroquinolone-resistant

Neisseria gonorrhoeae, 3rd generation cephalosporin-resistant, fluoroquinolone-resistant

Priority 3: MEDIUM

Streptococcus pneumoniae, penicillin-non-susceptible

Haemophilus influenzae, ampicillin-resistant

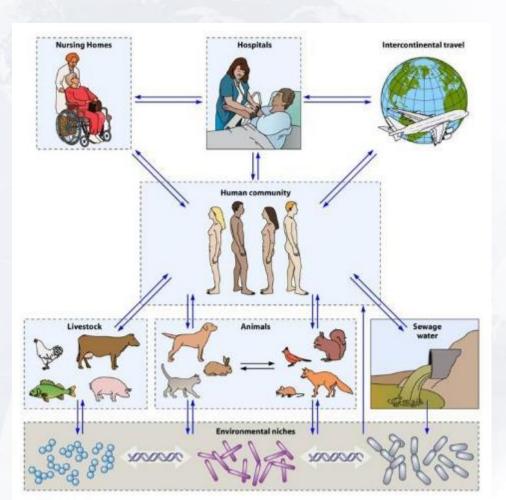
Shigella spp., fluoroquinolone-resistant

27-02-2017

Human Pathogens Highly R to ATB Principles for ATB Therapy

- 1. BGN-XDR (especially *A. baumannii* XDR) → itte ≠ infection by colonization or contamination.
- 2. Antimicrobial therapy \longrightarrow According to ATB
- 3. In XDR y PDR → consider most active ATBs, combined therapy and or high doses may be necessary(most common in BGN).
- 4. Dosage according to PK and PD profile, T>CIM (> doses, prolonged infusion) for β-lactam AUC/CIM or Cmax/CIM (> doses) for quinolones and aminoglucosides
- 5. Doses adjusted to weight, liver or renal failure and elderly patients.
- 6. Eliminate risk factors for infection and control sources for infection

Clin Microbiol Infect 2016; 22: S15–S25



AMR affects sustainable development

ScEYEnce Studios ASM Journals CMR00023-13 Dr. Woerther Figure: 02 AMR from Medical Standpoint

holistic, integral and multi-sectoral perspective « One Health"

Collaboration for One Health

Food and Agriculture Organization of the United Nations WORLD ORGANISATION FOR ANIMAL HEALTH

Leader in global food and agriculture Leader in health and animal health standards

Leader in world health

Trilateral Agreement Collaboration Unite priorities including Antimicrobial Resistance

Key Areas– Global Action Plan

1. Improve knowledge and understanding of AMR	2. Enhance knowledge through surveillance and research	3. Reduce incidence of infections through effective hygiene &IPC measures	4. Optimize use of antimicrobials in human and animal health	5. Assure sustainable investment through research and development
Risk Communication	National AMR Surveillance	IPC in healthcare facilities	Access to quality antimicrobials and regulatory	Measure burden of AMR
	Improve laboratory capacity	Prevention at community level	systems Use in	Evaluate investment needs
Education	Research and Development	Animal Health: Prevention and Control	veterinary care and agriculture	Establish procedures for participation

Strategic Plan Global Action Plan

54.° CONSEJO DIRECTIVO

67.ª SESIÓN DEL COMITÉ REGIONAL DE LA OMS PARA LAS AMÉRICAS

Washington, D.C., EUA, del 28 de septiembre al 2 de octubre del 2015

Punto 4.9 del orden del día

CD54/12, Rev. 1 2 de octubre del 2015 Original: español

PLAN DE ACCIÓN SOBRE LA RESISTENCIA A LOS ANTIMICROBIANOS

Key Areas– National Action Plan

1. Improve knowledge and understanding of AMR	2. Enhance knowledge through surveillance and research	3. Reduce incidence of infections through effective hygiene &IPC measures	4. Optimize use of antimicrobials in human and animal health	5. Assure sustainable investment through research and development
Risk Communication	National AMR Surveillance	IPC in healthcare facilities	Access to quality antimicrobials and regulatory	Measure burden of AMR
	Improve laboratory capacity	Prevention at community level	sistems Use in	Evaluate investment needs
Education	Research and Development	Animal Health: Prevention and Control	veterinary care and agriculture	Establish procedures for participation

Awareness and Education Strategic Area I

Objetive 1: Improve awareness and understanding of AMR through training and education

Microbiologist know:

- Basis of AMR activity (PK-PD)
- Basis of AMR resistance
- Source of AMR mechanisms
- Transmission routes (Disseminations of strains or AMR mechanisms)
- Magnitude of the problem
- Best ways to use laboratory test for patient care

Can collaborate in training of healthcare personnel Participate in awareness campaigns to promote understanding of problem Participate in education strategies at undergraduate level

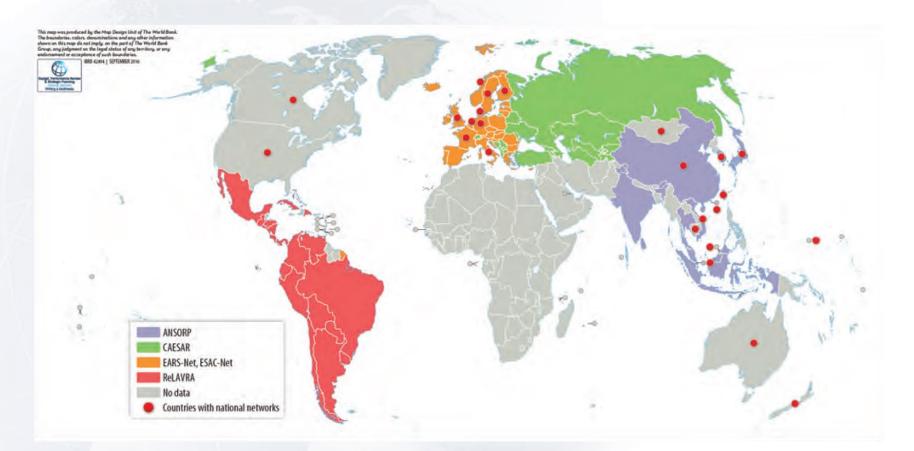
Surveillance and Research Strategic Area II

Objetive 2: Strengthen knowledge and evidence through surveillance and research Microbiologists are responsable for:

- Quality of diagnosis
- Surveillance: Production of data, collection, analysis and reporting (≠ sources)
- Source of resistant mechanisms
- Detection, confirmation, characterization and communication of AMR emergencies
- Measuring impact of AMR (research)
- Provide microbiological knowledge for the development of guidelines for treatment based on local epidemiology(human)

Definition of Surveillance

The collection, analysis, interpretation and systematic dissemination and continuity in data for public health action.



- Understanding of the problem
- Establishment of appropriate intervention measures
- Evaluation of efficacy

Global AMR Surveillance Networks

Country or Region	Programs
European Union	European Antimicrobial Resistance Surveillance System (EARS-Net) European Antimicrobial Consumption Network (ESAC-Net)
Latin America	Latin American Surveillance Network of Antimicrobial Resistance (ReLAVRA)
Asia	Asian Network for Surveillance of Resistant Pathogens (ANSORP)
Central Asia and Eastern Europe	Central Asian and Eastern European Surveillance of Antimicrobial Resistance (CAESAR)
Global	Global Antimicrobial Resistance Surveillance System (GLASS)

The full report is available at worldbank.org/health.

PRODUCE INFORMATION TAILORED TO SYSTEM USERS THAT COVERS ALL PURPOSES

THE KEY

INFORMATION USERS

LOCAL Healthcare Facilities

Data for individual patient care Design empirical treatment plans Purchase antimicrobials for faciltiy Programs for optimal antimicrobial use Infection control programs

REGIONAL Continent

- Elaboration of regional AMR trends
- **Advising Countries**
- Prioritization of strategies
- Advocacy

NATIONAL Country

Information for decision-makers – development- implementationevaluation of PANs

- Data for the development of national treatment guidelines(gono, diarrheas, pneumonias, etc)
- Prevention Strategies(vaccines, education, legislation, etc)
- Production/updating essential medical supply lists

GLOBAL Planet

Resource Mobilization

Consensus Building, Global Recommendation and Guidelines

Components for National Surveillance System

Components of National Surveillance System

Surveillance Protocol

- Definition of samples/pathologies for surveillance
- Definition of pathogens for surveillance
- (ATBs)sensitivity profile for pathogens
- Definition of clinical/epidemiological data to be collected
- Standardization of internal quality control protocol
- Guidelines for clinical reporting(restriction for infection site, pathogen, methodology, etc)
- Definitions related to differentiation of hospital acquired infections in the community, colonization, contaminations, etc.
- Accepted methodologies
- Regulations for interpretation and reporting on current sensitivity tests

Surveillance Levels

Collaboration Communication Exchange of Experiences Sharing Information Feedback

(GLASS) Regional

Global

(ReLAVRA)

National Surveillance

Local Surveillance– Healthcare Facilities

Structure of Global Surveillance System

Collaborating with laboratories

Surveillance data for the development/design of empirical treatment at local level

• > 80% of treatment is empirical

For rational use of antibiotics it is important to know which microorganisms are circulating and their resistance profiles

• Decision-makers need data

To design strategies and measure their impact

Strategy

Use of routineinformation provided by laboratory(requirement: standardization and quality assurance) in sentinel units

AMR Surveillance

What does AMR surveillance information provide?

- Recognize involved species
- Establishes prevalence of pathogens and AMR profile(extension of the problem)
- Suggest alternatives for treatment
- Information for designing control measures
- Determines efficacy of measures

Excellent opportunity to know and improve laboratory quality

Latin American Network for AMR Surveillance (ReLAVRA)

- Created in 1996 by PAHO/WHO
 - 8 countries
 - Pathogens transmitted by food: Salmonella, Shigella and V. cholerae
- Incorporation of countries and expansion
 - 2000: Nosocomial pathogens, 14 countries
 - 2008: 19 countries

ReLAVRA

Coordination PAHO

Quality Control Referral Center

Argentina

Ecuador

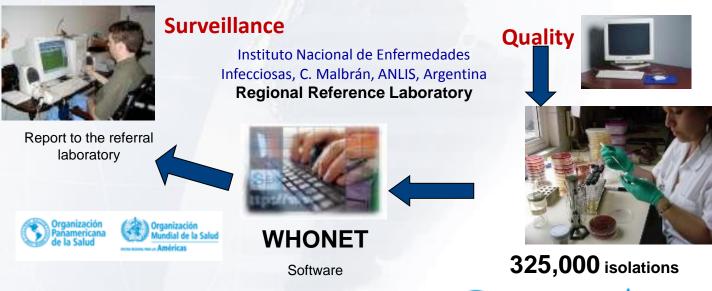
6

Latin American Network for AMR Surveillance (ReLAVRA)

50

"Obtain reliable, timely and reproducible data to be used to improve patient care and strengthen surveillance programs through the establishment of sustainable quality control programs"

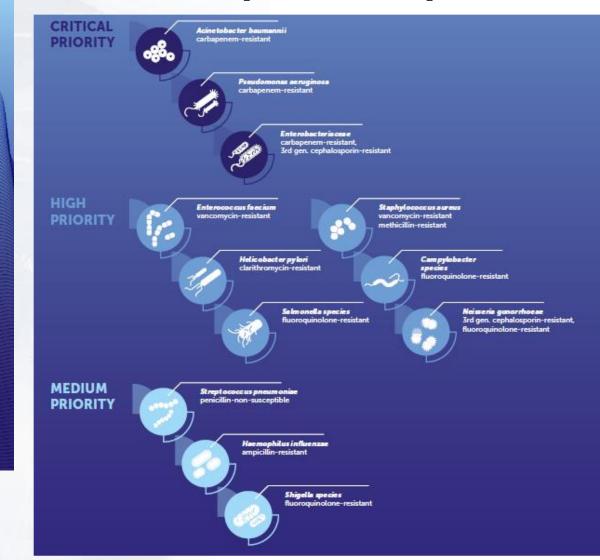
Latin American Network for AMR Surveillance - ReLAVRA



20

National reference laboratories

750 Sentinel Laboratories



Network Growth

http://www.who.int/medicines/areas/ration al_use/PPLreport_2017_09_19.pdf?ua=1

PRIORITIZATION OF PATHOGENS TO GUIDE DISCOVERY, RESEARCH AND DEVELOPMENT OF NEW ANTIBIOTICS FOR DRUG-RESISTANT BACTERIAL INFECTIONS, INCLUDING TUBERCULOSIS

Pathogens under surveillance 1996-2017

Nosocomial pathogens

- Enterococcus spp.
- Klebsiella pneumoniae
- Acinetobacter spp.
- Pseudomonas aeruginosa
- Staphylococcus aureus
- Escherichia coli
- Enterobacter spp.

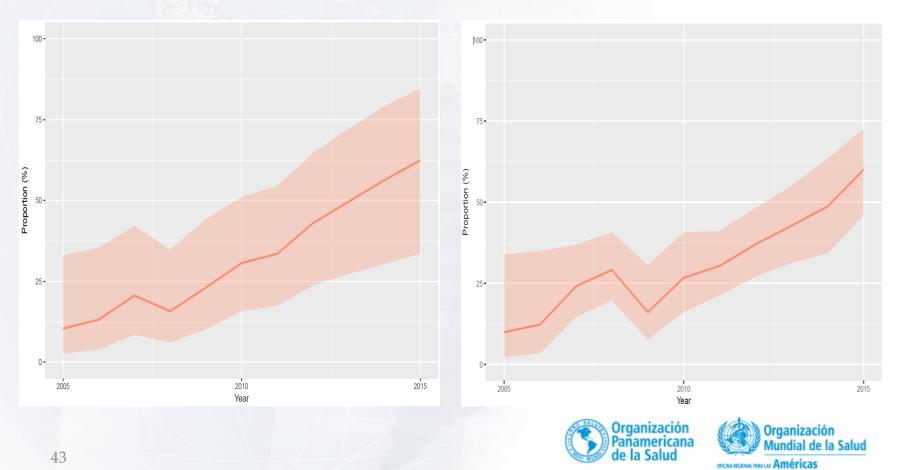
Community pathogens

- Salmonella spp.
- Shigella spp.
- Vibrio cholerae
- Escherichia coli
- Neisseria meningitidis
- Neisseria gonorrhoeae
- Streptococcus pneumoniae
- H. influenzae
- Campylobacter
- S. β hemolítico
- S. aureus

Pathogens under surveillance RELAVRA 1996-2017

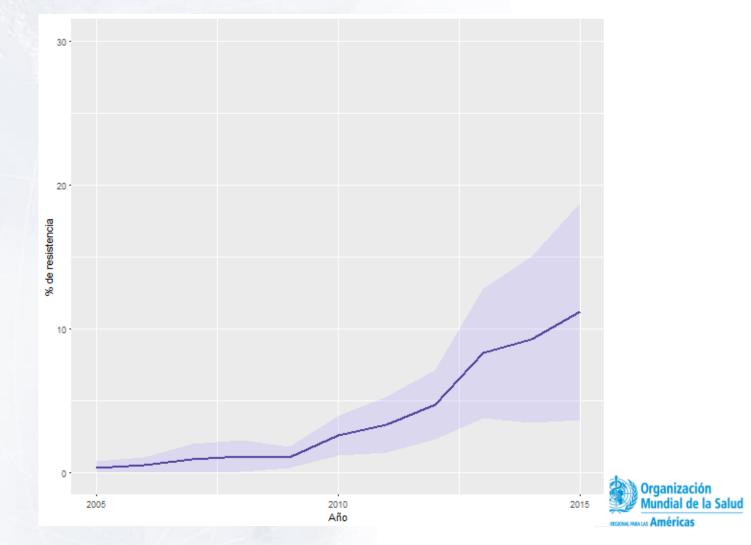
Nosocomial pathogens

- Enterococcus spp.
- Klebsiella pneumoniae
- Acinetobacter spp.
- Pseudomonas aeruginosa
- Staphylococcus aureus
- Escherichia coli
- Enterobacter spp.


Community pathogens

- Salmonella spp.
- Shigella spp.
- Vibrio cholerae
- Escherichia coli
- Neisseria meningitidis
- Neisseria gonorrhoeae
- Streptococcus pneumoniae
- H. influenzae
- Campylobacter
- S. β hemolítico
- S. aureus

Neisseria gonorrhoeae


Resistant to penicillin (2005-2015)

Resistant to ciprofloxacin (2005-2015)

Klebsiella pneumoniae

Resistant to carbapenemes (2005-2015)

Infection Prevention and Control

Strategic Area 3

Objective 3: Reduce incidence of infection through effective hygiene and infection prevention and control measures

• IPC

- Effective hand hygiene
- Cleaning/Sterilization procedures
- Reduce healthcare associated infections(HAIs)

• Prevention at community level:

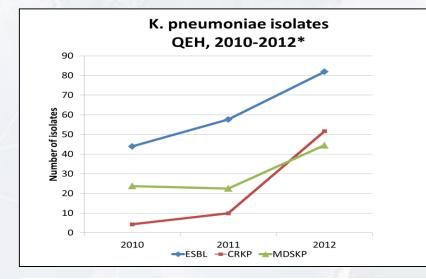
- Vaccination
- Hand Hygiene
- Environmental Sanitation
- Animal health: prevention and control
 - Vaccination
 - o Biosecurity and hygiene
 - Sustainable animal production

Objetive 3: Reduce incidence of infection through effective hygiene and infection prevention and control measures

Microbiologist may collaborate with:

- Adequate management of clinical samples
- Precise and timely identification and sensitivity tests
- Patient and environmental surveillance cultures
- Using microbiological data for early detection of events that can be outbreaks in hospital and communities
- Study and characterize outbreaks
- Evaluation of dissemination of nosocomial and community pathogens
- Collaborate with impact evaluation of prevention strategies(ex: vaccines)
- Notify healthcare personnel on appearance of AMR mechanisms under surveillance at hospital or emergence of new pathogens/AMR mechanisms

Main Nosocomial Infection Pathogens


Emerging resistant pathogens (MDR, XDR y PDR)

- S. aureus meticillin-resistant (MRSA)
- Enterococos resistant to vancomycin (VRE)
- -Negative Bacilios gram MDR-GN
 - ETBs resistant to carbapenems (CRE)
 - **BLEE** Productors
 - Acinetobacter baumannii Pseudomonas aeruginosa
- C. difficile

KPC Outbreak.....

*Xba*I PFGE K. Pneumoniae productora de carbapenemasa KPC CAREC-2013

5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 Calle: λ Ladder M11384 ST258 1) 12-03514 12-03515 12-03516 51 12-03517 6) 12-03518 8) 12-03519 12-03520 9ì 10) 12-03521 12-03522 12) 12-03523 13) 12-03524 14) M11384 ST258 15) \ Ladder A2 A5 A4 A1 A1 A3 A1 A1 A6 A2 A7 Tipos clonales

Number of KPC outbreaks per ward, January- September 2012

PFGE of selected samples. Take into consideration similarity in band patterns in each sample.

Nosocomial Outbreak Investigation: Laboratory Role

Investigation Step	Role of clinical microbiology laboratory
Acknowledgement of Problem	Surveillance and early alert system, ideally part of laboratory information system; notify IPC staff of outbreak of possibility, unsual resistance patterns, possible patient to patient transmission
Establish case definition	Helps and advises on inclusion of laboratory diagnosis in case definition
Confirm cases	Perform laboratory confirmation
Complete case search	Characterize bacterial cultures with precision, store cultures of sterile sites and of epidemiological importance, laboratory data base of new cases
Establish base line and compare with attack rate during outbreak	Provide continous data monitoring for baseline for selected units and infection sites, find previous cases in laboratory data base
Characterize outbreak	Perform genotyping of involved strains, compare with isolated endemic strains to determine if the outbreak involves a clone (only if the type of pathogen involved is routinely stored)
Generate hypothesis about causality: reservoir, propagation mode, vector	Carry out complementary studies if there are grounds for epidemiological link : personnel, patients, environment
Case-control or cohort study	Adjusts laboratory procedures if needed
Continual surveillance to document efficacy of control measures	Maintain laboratory surveillance and alert functions

Clinical Microbiology and Infection Prevention. D. Diekema and M. Saubolle. J Clin Microb. 2011, S57–S60

Appropriate Use of Antibiotics

Strategic Area 4

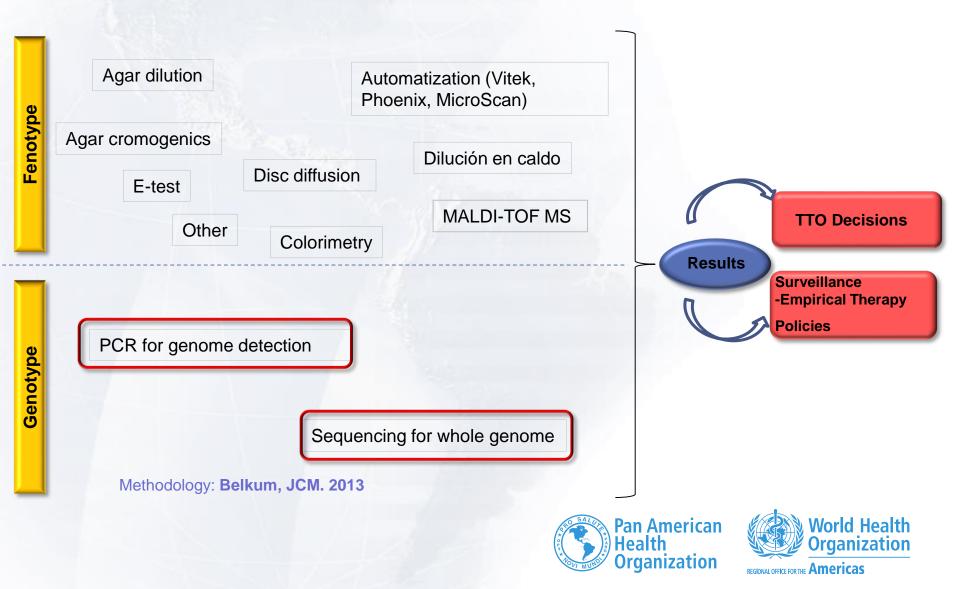
Unnecessary use of antibiotics at a global level

Shapiro, JAC. 2013

Optimize the use of antimicrobials: Benefits

- Improve clinical outcomes of patients with infections;
- Minimize adverse effects associated with the use of antimicrobials (including onset and dissemination of resistances);
 Guarantees use of cost-efficient treatments

Objective 4: Optimize use of antimicrobials in human and animal health


Microbiologists can participate in better use of antimicrobials(Stewardship/PROA):

- Timely, appropriate and quality diagnosis results
- Selective report on sensitivity according to pathogen, site of infection, AMR profile, etc.
- Report based on pharmacokinetic and pharmaco-dynamic parameters
- Special tests when necessary:
 - Rapid testing
 - Quantitative testing
 - Bactericide tests
 - Evaluation of synergic activities
 - Alternative treatment
 - Drug Assessment
- 54AMR Surveillance

Methodologies for sensitivity tests

WHY IS IT IMPORTANT TO DETECT CARBAPENEMASE?

Various methodologies to study sensibility to carbapenemase (Discos, BMD, automatized systems, E-test) each one determines carbapenemasas with different sensibility.

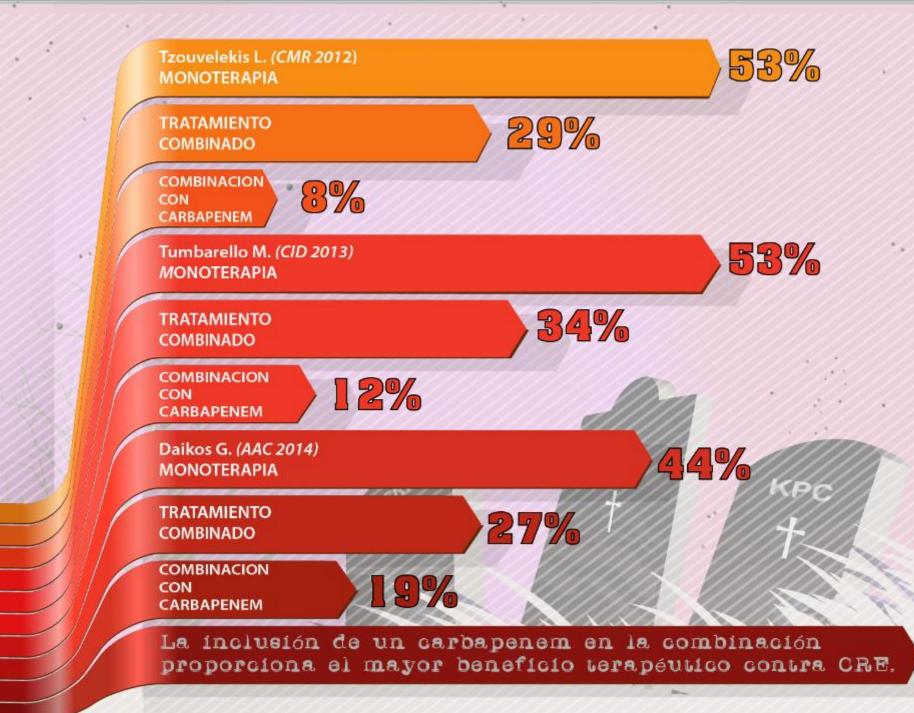
D. Barbarini

An undetected carbapenemase increases patient mortality in

20-40%

due to sub-optimal treatment

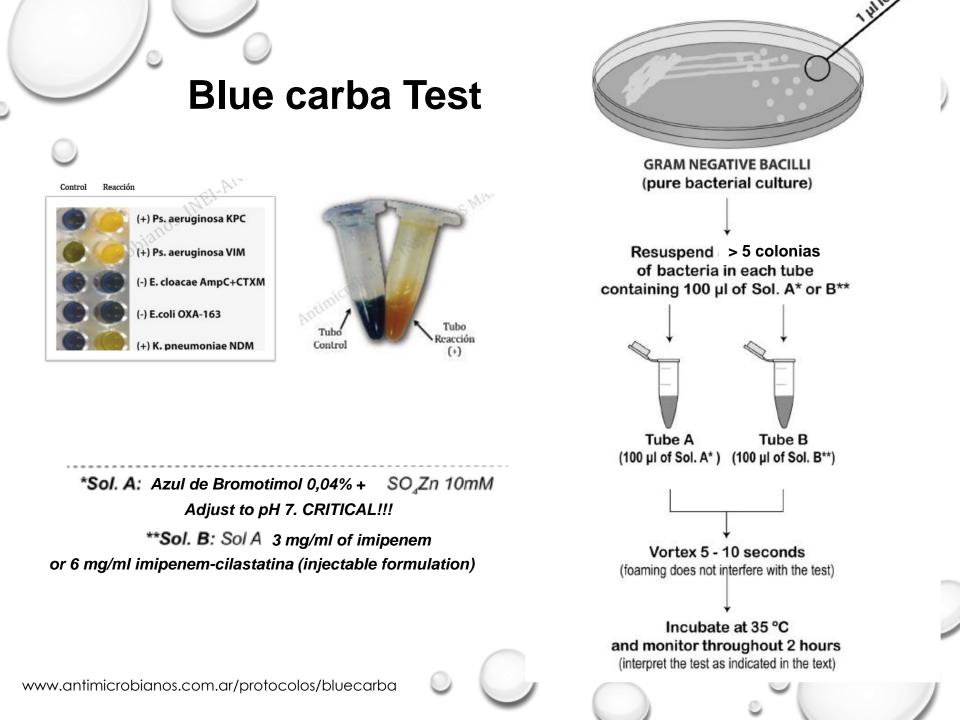
Qureshi Z. 2012; Tzouvelekis, L. 2012; Tumbarello M. 2013; Petrosillo N. 2013; Daikos G. 2014


In carbapenemase endemic zones, labs must conduct rapid detection of resistant mechanisms to assure adequate patient treatment and take appropriate infection control measures

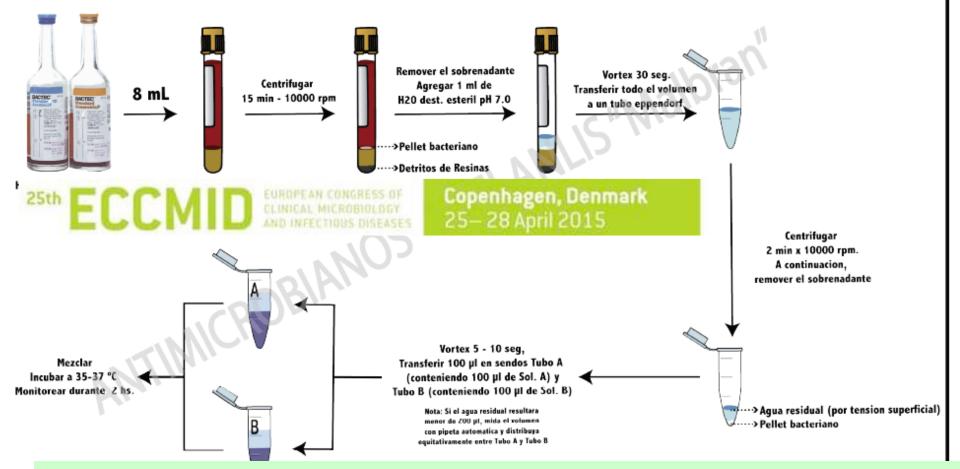
DELAY IN ESTABLISHMENT OF ADEQUATE TREATMENT

Importancia en la rapidez del tratamiento acertado. Mortalidad asociada a shock séptico. Kumar, A. Crit Care Med, 3. 2006 Fracción total de pctes Fracción de pctes que sobreviven % acumulado de iniciación de ATB afectivo 0.8 0.6 0.4 0.2_ 9-12 12-24 24-36 >36 0.5-1 1-2 2-3 3-4 4-5 5-6 6-9 0 - 0.5T (hs) desde la hipotensión y el comienzo de tratam efectivo

Beginning correct therapy within 1 hour of initial hypotension is related with 80% of survival; for each hour in delayed treatment survival rate declines by 7.6%

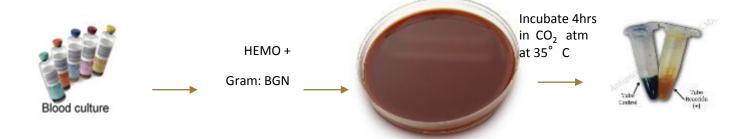

 An undetected carbapeneme increases mortality and is an independent factor with poor prognosis....

MERO


• Timeliness in detection...

rdmann P, EID 18(9):1503, 2012. Nordmann P, JCM 50(11):3773, 2012. Nordmann P, AAC 56(12):6437, 2012

Rapid Detection of Carbapenemase-Producing Gram Negative Bacilli from Blood Cultures Using the Blue-Carba Test (BCT) Fernando Pasteran1, Paola Ceriana1, Ezequiel Albornoz1, Sara Kaufman2, Alejandra Corso1. Esquema simplificado para la detección rápida desde botella de hemocultivo



•Detected carbapenemase directly from blood culture with a similar sensitivity (95% vs 97.5%) to Bctest directly of colony with specifity of 100%

•Reduced detection time from 24-48hours to 30-150 min.

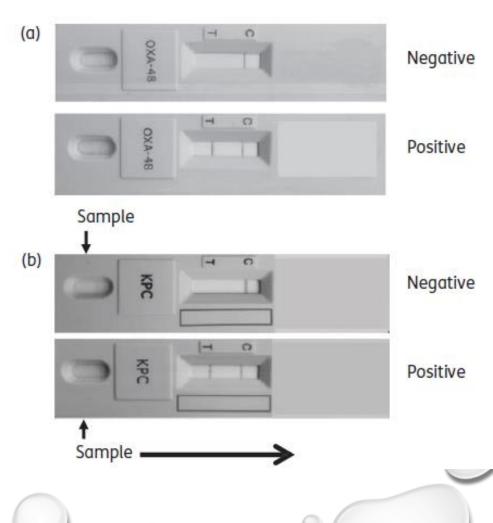
Rapid Blue-Carba test: reduction in the detection time of carbapenemases performed from a 4-hour bacterial lawn

Marcela Nastro, Melisa Ayora, Susana García, Carlos Vay, Ángela Famiglietti & Carlos Hernán Rodriguez

Correlation between Blue-Carba from colony and RBCT (rapid blue carba test) was 98.3% (OXA163 kpn).

The rapid identification of CPO CR using RBCT allows clinicians to take appropriate therapeutic measures in shorter time frames because incubation time was reduced from 24 to 4 hours.

Lateral Flow Immunochromatographic (IC) Assay OXA-48 K-SeT® and KPC-K-SeT ® (Coris BioConcept, Gembloux, Belgium)


OXA-48, OXA-162, OXA-181, OXA-204, OXA-232 y OXA-244

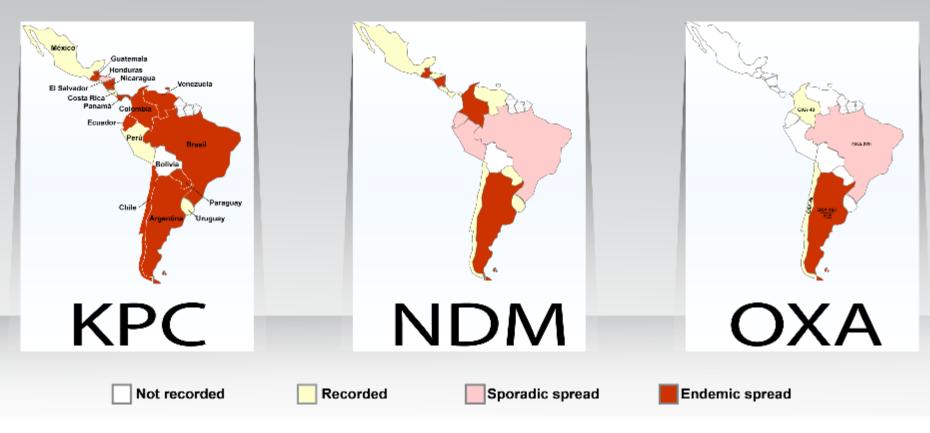
Positives between 15 and 360 seconds

Negatives after 15 minutes

Directly from colony but can also be via urine or blood sample.

100% of S and E

Glupczynski et al. JAC 2016 (Jan). Dortet et al. JAC 2016 (Mar).



Clinical evidence: SUITABLE FOR COMBINED TREATMENT ("TREATABLE" RANGE)

NON SUITABLE

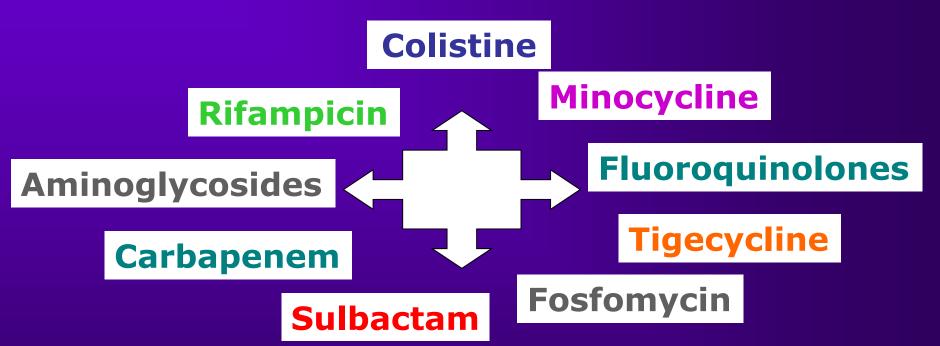
Actsusty associated Ctsth combots of the rapy according to MER MIC Tumbarello M., 2012. Petrosillo N., 2013.

Carbapenemase-producing Enterobacteriaceae in Latin America (2015)

Highly Resistant Human Pathogens

LABORATORY METHODS

- 1. Extended Antibiogram
- 2. Confirmation of resistance mechanism
- 3. Quantitative Methods
- 4. Death Curves(or speed of IV bactericide)
- 5. Synergy Methods
- 6. Dosing of serum concentrations of antimicrobials



Alternative treatment for severe infections due to XDR or PDR BGN. Each strain is different!

Synergy in subpopulation: One drug kills the subpopulation that is resistant to the other drug and viceversalación que es R a la otra droga y viceversa. Mechanistic Synergy : How each drug acts in a different celular site, one drug increases the mortality rate of another.

J Y Song y col. 2007, JAC 60:317 - T Y Tan y col. 2007, JAC 60:421 – Motaouakkil S y col. 2006, JI 53:274 – Timurkaynak F y col. 2006, IJAA 27:224 - Landman D. y col 2008, CMR 21:449-465 – Yahav D. y col. CMI 2012

Highly Resistant Human Pathogens

XDR Enterobacteriaceae [19,33,40,59,60] Tigecycline-based combinations: Tigecycline + aminoglycosides^a Tigecycline + carbapenems^b Tigecycline + fosfomycin Tigecycline + polymyxin Polymyxin-based combinations: Polymyxin + carbapenems Polymyxin + tigecycline Polymyxin + tigecycline Polymyxin + fosfomycin Other combinations: Fosfomycin + aminoglycosides^a (ceftazidime or cefepime) + amoxicillin–clavulanic acid

Two-drug combination

Aztreonam + aminoglycosides^a

XDR Acinetobacter baumannii [42,49,54,55,64]

Infection

- Combinations based on sulbactam or its fixed-dose combination:
 (cefoperazone-sulbactam or ampicillin-sulbactam) + tigecycline
- (celoperazone subactam or ampicillin-subactam) + dozycycline
 (celoperazone-subactam or ampicillin-subactam) + dozycycline
- Sulbactam + carbapenems^b
- Tigecycline-based combinations:
- Tigecycline + (cefoperazone-sulbactam or ampicillin-sulbactam)
- Tigecycline + carbapenems^b
- Tigecycline + polymyxin
- Polymyxin-based combinations:
- Polymyxin + carbapenems^b
- Polymyxin + tigecycline

XDR Pseudomonas aeruginosa^c [29,30,40,43]

- Polymyxin-based combinations:
- Polymyxin + antipseudomonal β-lactams^d
- Polymyxin + ciprofloxacin
- Polymyxin + fosfomycin
- Polymyxin + rifampicin
- Antipseudomonal β -lactams-based combinations:
- Antipseudomonal β-lactams^d + aminoglycosides^a
- Antipseudomonal β-lactams^d + ciprofloxacin
- Antipseudomonal β-lactams^d + fosfomycin
- Ciprofloxacin-based combinations:
- Ciprofloxacin + antipseudomonal β-lactams^d
- Ciprofloxacin + aminoglycosides
- Combination of two β -lactams:
 - (ceftazidime or aztreonam) + piperacillin-tazobactam
- Ceftazidime + cefoperazone-sulbactam
- Artroopam + coftaridimo

• Tigecycline + polymyxin + carbapenems^b

- Cefoperazone-sulbactam + tigecycline + carbapenems^b
- Cefoperazone-sulbactam + doxycycline + carbapenems^b
- Imipenem + rifampicin + (polymyxin or tobramycin)

- Polymyxin + antipseudomonal β-lactams^d + ciprofloxacin
- Polymyxin + antipseudomonal β-lactams^d + fosfomycin
- Polymyxin IV infusion + carbapenems + polymyxin aerosol inhalation
- Aztreonam + ceftazidime + amikacin

Clin Microbiol Infect 2016; 22: S15–S25

Three-drug combination

Misuse of **ANTIBIOTICS** puts us all at risk.

Taking antibiotics when you don't need them speeds up antibiotic resistance. Antibiotic resistant infections are more complex and harder to treat. They can affect anyone, of any age, in any country.

Abways seek the advice of a healthcare penessional before taking antibiotics.

Conclusion

The microbiology lab has to do more than provide microbiological diagnosis of patients to prevent and control AMR.

SEMANA MUNDIAL DE CONCIENCIACIÓN SOBRE EL USO DE LOS ANTIBIOTICOS 12 -18 de November de 2018

WHO WORLD ANTIBIOTIC AWARENESS WEEK

AHO/WHO

Thank you!

