Surveillance of Transmitted HIV Drug Resistance

Michael R. Jordan MD MPH

Consultant, WHO

Tufts University School of Medicine, Boston, USA

Surveillance of Transmitted HIV Drug Resistance (TDR)

- This work done by Natalie Exner and Marcello Pagano, Harvard School of Public Health
- In collaboration with Michael Jordan, Tufts University School of Medicine and Silvia Bertagnolio, WHO

Goal:

 Estimate the national prevalence of drug resistance in a recently infected population by integrating drug resistance testing into a pre-existing HIV surveillance system or routine diagnostic testing

Strategy:

- Use epidemiologic criteria (such as age and parity) to enrich population with recently infected samples
- For countries performing CD4 testing, further enrich population by excluding specimens with CD4 count <500 which likely represent late-stage infections
- Consider use of laboratory assays (MAA or LAg), if available, to identify recent infections

Examples of Sampling Frames:

- 1. Primigravida women <25 years of age included in antenatal care (ANC) surveys
- 2. Individuals <25 years of age newly diagnosed with HIV at voluntary counseling & testing (VCT) sites (if women, no previous pregnancies)
- Community-based or facility-based biobehavioral surveys (BBS) of key populations (MSM, IDU/DU, SW, transgender) <25 years of age
- 4. HIV case reporting (if centralized): <25 yrs and/or CD4 >500 and no previous pregnancies if female

Sampling Frame Considerations:

 Option 1: integrate TDR surveillance into routine HIV sentinel surveillance (ANC, VCT or BBS survey)

Sample Size:

 Countries with low prevalence and/or concentrated epidemics may consider testing all available specimens meeting criteria for "recent infection"

Sampling Frame Considerations:

 Option 2: select specimens meeting predefined epidemiological and/or laboratory criteria at the level of the diagnostic laboratory(s)

Sample Size:

 Countries with many samples available may identify a target sample size after considering testing costs and desired precision for public health policy

		Observed Prevalence of Drug Resistance	
		95% Wilson Confidence Interval	
		3% ^A	10% ^B
Survey Sample Size	n=25	(0.4%,18.1%)	(3.2%,27.5%)
	n=50	(0.7%,12.0%)	(4.3%,21.4%)
	n=100	(1.0%,8.5%)	(5.5%,17.4%)
	n=150	(1.2%,7.1%)	(6.2%,15.8%)
	n=200	(1.4%,6.4%)	(6.6%,14.9%)
	n=250	(1.5%,5.9%)	(6.9%,14.3%)
	n=300	(1.6%,5.6%)	(7.1%,13.9%)

A: Estimated TDR Prevalence from 2012 WHO HIVDR Report

A: Estimated IDR Flevalence from 2012 WHO HIVDR Report **B**: Example of a higher observed TDR Prevalence from 2012 WHO HIVDR Report

Primary Analysis of the Survey:

- Calculate a point prevalence
 - Proportion of genotyped samples with HIVDR
 - NUM: HIV+ eligible individuals with resistance
 - DEN: HIV+ eligible individuals recruited **over a 3 months**
- Calculate a 95% confidence interval
 - Recommend the Wilson (score) interval

Generalizability of Results:

- Will depend on population sampled
- TDR survey results generated by a study with representative sampling of the population of interest is ideal; however, this may not always be possible
- TDR survey results derived from sentinel systems have inherent biases; nonetheless, results are valuable for public health planning

Surveillance of TDR: International Benchmarks Reporting of TDR

HIGH(>15%)MODERATE(5-15%)LOW(<5%)</td>

 Reporting of data must take into account confidence intervals

Surveillance of TDR: Reporting of Data

Confidence Interval	Reporting
(1.0% , 4.0%)	LOW
(6.0%, 11.0%)	MODERATE
(16.0% , 25.0%)	HIGH
(3.0%, 11.0%)	LOW/MODERATE
(8.0%, 18.0%)	MODERATE/HIGH
(4.0%, 18.0%)	NO CLASSIFICATION

Surveillance of TDR: Public Health Actions

- Based on individual country cost effectiveness modeling
- Actions may include:
 - More frequent VL monitoring
 - Enhanced focus on Early Warning Indicators of HIVDR
 - Optimization of prevention messaging for HIV-positives in care
 - Enhanced I HIV prevention messaging/awareness

Questions?

