

Statistical Response to the Surveillance of Acquired HIV Drug Resistance in Populations Receiving ART (ADR)

Natalie Exner & Marcello Pagano Department of Biostatistics Harvard University School of Public Health

Acknowledgments

Work done in consultation with

- Silvia Bertagnolio World Health Organization
- Michael Jordan Tufts University Medical Center

Goals:

- Measure nationally representative outcomes relating to viral load suppression and HIVDR
- Viral load suppression outcome will inform programme functioning
- Observed HIVDR will support selection of second-line ART
- Population of interest is all patients on ART for more than 6 months

Primary Outcome #1:

 Using cross-sectional data from patients on therapy for more than 6 months, describe the prevalence of viral load suppression as a function of the length of time on ART

Primary Outcome #1:

Primary Outcome #2:

 Produce a nationally representative estimate of the prevalence of viral load failure and HIVDR in the population on ART for >6 mos

Patients with Viral Load Suppression (Defined as VL < 1000 copies/ml)	Patients with Viral Load Failure and HIVDR	Patients with Viral Load Failure and no HIVDR
--	---	---

Primary Outcome #2:

 Produce a nationally representative estimate of the prevalence of viral load failure and HIVDR in the population on ART for >6 mos

Patients with Viral Load Suppression (Defined as VL < 1000 copies/ml)	Patients with Viral Load Failure and HIVDR	Patients with Viral Load Failure and no HIVDR
--	---	---

Numerator = # of Patients with Viral Load Failure and HIV DR Denominator = # of Patients with Viral Load Measured

Primary Outcome #2:

- Produce a nationally representative estimate of the prevalence of viral load failure and HIVDR in the population on ART for >6 mos
- Calculate associated 95% confidence interval
 - Proposed survey is designed for a *confidence interval width of ±5%*

Proposed Survey:

- Two-stage cluster survey where countries randomly sample
 - 1. 10-20 clinics from a list of all clinics in the country, and
 - 2. consecutive eligible patients within clinics during a predefined three-month period

Presented plan can involve stratification on clinic type, region, or urban/rural location if desired

- Countries with routine viral load testing can use existing data to construct *Primary Outcome #1 – Viral Load Suppression Curve*
- Countries with routine genotyping among patients with viral load failure can use existing data to construct *Primary Outcome #2 – Prevalence of HIVDR/Viral Load Failure*
- We will provide responsible frameworks for analyzing both outcomes

Sampling Clinics:

- Sampling proceeds in the same manner described for the pre-treatment survey
 - List all clinics in the country
 - Identify extremely small clinics and determine if these clinics can be excluded from the sampling frame
 - Construct weights using information about # of patients on ART at each clinic

Sample Size Calculations for Primary Outcome #2:

Prevalence of HIVDR and Viral Load Failure

Probability Proportional to Proxy Size (PPPS) Sampling, Confidence Interval Width ±5%, HIVDR/VL Failure 14%

Number of clinics	Patients per clinic	Total # patients
10	51	510
15	25	375
20	16	320

Sample size calculations inflated for 15% viral load testing failure

Sample Size Calculations for Primary Outcome #2: Prevalence of HIVDR and Viral Load Failure

 Countries with few clinics can use the finite population correction to adjust sample size calculations

Sample Size Calculations for Primary Outcome #1: Viral Load Suppression Curve

- Sample size calculations are pending available data
- In countries using existing databases with viral load measurements, use all available data

Clinic-Level Statements:

- If countries want to make clinic-level statements about viral load suppression, they can calculate a clinic-specific curve
- Power to make clinic-level statements increases with the number of patients sampled per clinic

Relationship to Pre-Treatment Survey:

 Countries may choose to sample or analyze data from the same clinics for the pretreatment and ADR surveys

Pediatric Population:

 Surveillance of ADR can also be conducted in each country's pediatric population

- Definition of pediatric is country-specific

- Survey would follow same framework as described for the adult population
- Sampling frame is a list of all sites in the country providing pediatric ART

Thank you.

Questions?