Cardiosvascular Disease Prevention through Dietary Salt Reduction

First PAHO Expert Group Meeting

Washington, D.C.

9-10 September 2009

Cardiovascular Disease Prevention through Dietary Salt Reduction Washington, D.C: Sept 9-10, 2009

Salt, economics and health

Dan Chisholm, PhD

Dept of Health Systems Financing, WHO Geneva

Royal Saltworks at Arc-et-Senans (Doubs, France)

Salt and the economy

- Salt is an essential physiological need for human life, yet historically supply was scarce; salt was therefore a highly valued resource so much so that people were paid or indeed sold in units of salt (a 'salary'), & were prepared to take up arms in order to exercise control over it, e.g. in order to monopolise supply & raise taxes
- Salt still state-monopolised in most countries, but supply is now plentiful and cheap, meaning that a key concern today is one of excessive demand / over-consumption, in particular its effects on CVD outcomes (and ultimately on economic output /productivity)
- So where before the concern with salt was all about increasing & protecting supply / production, the concern now is around reducing demand & protecting the public health

How to reduce demand for / consumption of salt?

Strategy	Example	State intervention
Promotion	Mass media awareness campaign	Light
Regulation	Voluntary or mandatory code of conduct for food manufacturers	Moderate
Taxation	Excise tax on salt (use to subsidise healthy foods?)	Heavy
Substitution	Replace sodium with potassium	Heavy

Economic evidence from the literature

Authors	Interventions assessed	Design / Setting	
	Information campaign	Simulation model	
Selmer et al (JEPH, 2000)	Reduced & declared salt content by industry	Norwegian popn (40+ yrs)	
	Tax and subsidies	25 yrs of health effects	
Murray et al (Lancet, 2003)	Voluntary cooperation of manufacturers to	Cost-effectiveness model	
	reduce salt in processed foods, plus labelling	WHO regions (30+ yrs)	
	Legislation and enforcement of reduced salt in	10 yrs of health effects	
	processed foods, plus labelling		
Asaria et al (Lancet, 2007)	Mass media awareness campaign	Scaling-up model	
	Voluntary cooperation of manufacturers to reduce salt in processed foods, plus labelling	23 large developing countries (30+ yrs)	
		10 yrs of health effects	

osts and consequences of reduced salt intake in Norway over 25 year (Selmer et al; JEPH, 2000)

			_
Implementation costs	US\$, million	Avoided costs (economic benefits)	US\$, million
Information campaign & devt of new recipes	45	Reduced hypertension treatment	147
Taxes & subsidies	355	Increased productivity	404
Health care costs in extended years of life	223	Avoided care for MI & stroke	286
		Avoided time losses	23
Total implementation costs	625	Total avoided costs	862

Net cost / gain:

\$237 million

WHO cost-effectiveness analysis of CVD prevention

(Murray et al; Lancet, 2003)

- Comparative, population-based, sector-wide approach, operationalised via the CHOICE project (CHO) osing Interventions that are Cost-Effective; www.who.int/choice)
 - effectiveness: healthy years gained / DALYs averted over the lifetime

of a population, with and without intervention(s) in place

- resource costs: patient + programme level (international \$)
- Range of current and new/potential interventions assessed
 - personal: anti-hypertensive and ant-cholesterol drugs; poly-drug thearpy / absolute risk approach
 - <u>non-personal</u>: salt (15 and 30% reduction); mass media to reduce cholesterol
- Results summarised in WHO regional C-E databases
 - available for country-level adaptation / analysis

Costs and effects of CVD prevention; WHO sub-region AmrB

Cost-effectiveness of CVD prevention (I\$ per DALY averted); WHO subregion AmrB

WHO-CHOICE contextualisation study in Buenos Aires

(Rubinstein et al; CERA, 2009)

Key points

- Chronic disease accounts for > 50% of disease burden in Argentina
- Salt use per head in Argentina = 12g per day (3.4g from bread)
- Intervention: to remove 1 gram of salt per 100 grams of bread made / sold
- Less salt in bread
 - Low cost
 (< ARS\$ 100k per year, for city of 3m)
 - Highly cost-effective
 (ARS\$ 151 per DALY averted)
 - Modest health gain
 (compared to poly-drug therapy for individuals at high risk of a CVD event

Scaling-up salt interventions; costs and health impacts

(Asaria et al; Lancet, 2007)

- Intervention: Reduce daily salt intake in popn by 15%
 - Work with industry to reduce salt content of prepared food
 - Sustained mass media campaign to reduce salt added in cooking and at the table
- Costs & effects (in 23 low- & middle-income countries):
 - Financial outlay (per person per year): US\$ 0.04 0.32
 - Health impact (over 10 years): 8.5 million deaths prevented

Estimated change in mean SBP (mm Hg) as a result of 100 mmol per day (5-8 g per day) change in sodium intake

	Men				
	30-44 years	45-59 years	60–69 years	70–79 years	80–100 years
Law and colleagues ^{17,45}	5.81	7.03	10-43	12-99	16-03
Intersalt study60*	2.1	2.1	2.1	2.1	2.1

Data from Law and colleagues are means; those from Intersalt are medians.

* the uncorrected coefficient from the Intersalt data in the sensitivity analysis.

Correcting the Intersalt coefficient for regression dilution bias results in values similar to those in other studies; however, the method of applying the correction is controversial.

	30-44 years	45-59 years	60-69 years	70-79 years	80–100 years
alt-reduction intervention					
eduction in salt intake (g per day)*	1.70 (0.42)	1.69 (0.46)	1.68 (0.46)	1-68 (0-46)	1.68 (0.46)
ecrease in mean systolic blood pressure (mm Hg)†	1.24 (0.26)	1.70 (0.37)	2.34 (0.52)	2.83 (0.64)	3.46 (0.82)

stimated health impact of salt reduction & tobacco control strategies in 23 large low- & middle-income countries (Deaths averted, 2006-2015)

Estimated cost of a salt reduction programme (US\$ per person per year, 2005)

Salt substitution: China study

(Neal et al, J Hypertension, 2007)

Effectiveness

SBP change: 3.7 mmHg

Costs & cost-effectiveness

- Not specifically assessed
- But v low cost as intervention is implemented at source of supply / manufacture (similar to voluntary agreement to reduce salt levels)
- Cost-effectiveness expected to be as favourable as the 15% reduction modelled in CHOICE (which also resulted in SBP change of 3-4 mmHg)
- Practical and feasible to implement

Salt, economics and health - conclusions

- The market value / price of salt has diminished over time:
 - No longer the 'salvation' it once was..? (you can have too much of a good thing)
 - Demand strong / inelastic, but supply now cheap, so tax no longer a good option?
- The economic value of intervention is high:
 - Millions of deaths can be averted for an investment of less than 50 cents per capita
 - Each healthy life year gained costs a small fraction of average income per capita
 (CMH / CHOICE threshold for considering an intervention to be v cost-effective)
- Transaction costs of getting something done are low / modest

