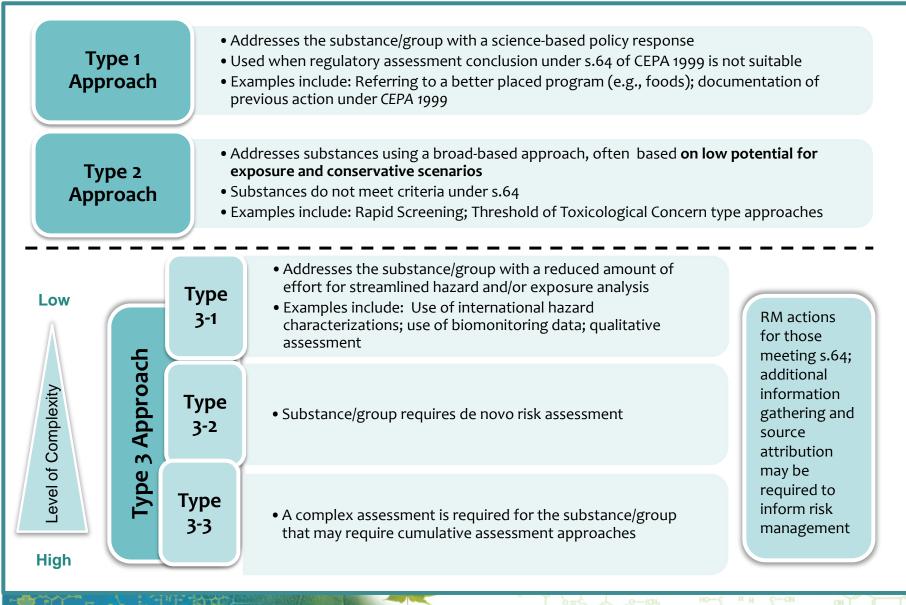


Hazard Characterization and Tools for Health Risk Assessment under CMP

Health Canada – PAHO Workshop Lima, Peru November 8-10, 2016

CHEMICALS MANAGEMENT PLAN

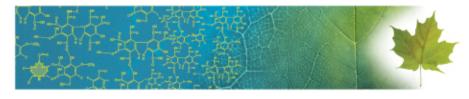
PLAN DE GESTION DES PRODUITS CHIMIQUES



Outline

- Information Gathering
- Data Analysis
- Critical Effects
- Critical Effect Levels/Point(s) of Departure
- Use of New Approach Methodologies

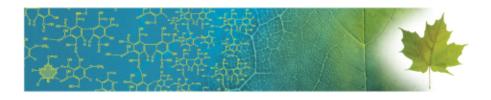
Risk Assessment Toolbox


Information Gathering

- Identify other appropriate international/national assessments
 - World Health Organization, International Programme on Chemical Safety
 - International Agency for Research on Cancer
 - Organization for Economic Cooperation and Development
 - US Environmental Protection Agency
 - Other Program Areas within Health Canada (e.g., Pest Management Regulatory Agency)
 - Others

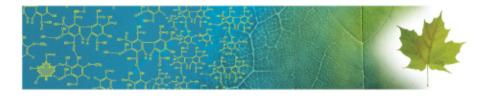
Determine Approach Type

- Key is to be efficient, tailor effort to assess
- If existing acceptable assessment identified, consider Type 3-1 approach
 - Generally, conclusions of assessment accepted
 - Using comprehensive search strategy for consistency, search literature for one year prior to publication of assessment
 - Determine if new information would alter earlier conclusion
 - If not, rely heavily on other assessment outcome; minimize effort required to assess
 - If new data impact earlier conclusion, focus attention principally on that area or new area of concern



Determine Approach Type

- If no existing acceptable assessment identified, select Type 3-2 (de novo assessment) or Type 3-3 (more complex de novo assessment)
 - Using comprehensive search strategy for consistency, search literature for any relevant information from human epidemiological studies, toxicological studies in experimental animals and relevant in vitro studies (e.g., genotoxicity)


6

If needed to fill critical data gaps and time permits, initiate focussed research

Analysis of Hazard Information

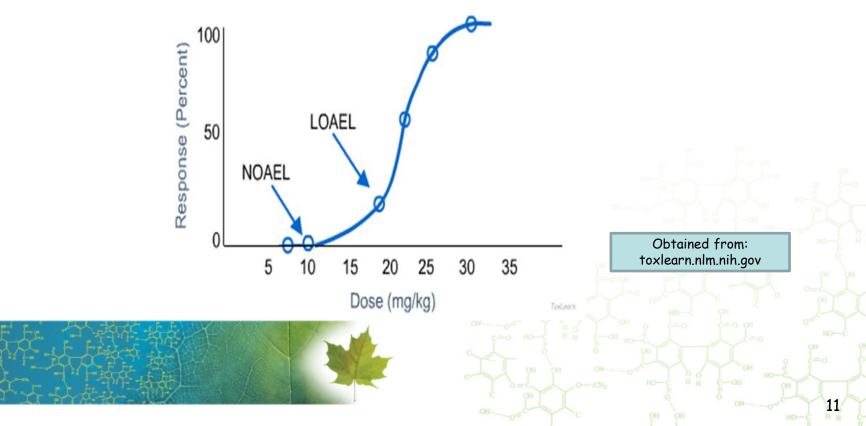
- Informed by exposure potential
 - Consider relevant durations and routes of exposure
 - Duration: Long term and/or shorter term effects data important, depending on likely sources of exposure (i.e., exposure via environmental media & food vs. short term exposure from use of consumer products)
 - Route: ideally, hazard studies conducted by relevant routes of exposure
- Consider the potential for toxicity to humans of the chemical
 - Physical & chemical properties
 - Toxicokinetics how much the body absorbs, distributes, metabolizes and eliminates the chemical (not always necessary to delve too deeply for screening level assessment)

Analysis of Hazard Information

- Summarize/tabulate studies:
 - Epidemiological data greater weight given to analytical studies (cohort and case-control studies)
- Organize non-human effects data by duration and focus of study; for example:
 - Acute toxicity
 - Short term toxicity
 - Subchronic toxicity
 - Chronic toxicity/carcinogenicity
 - Genotoxicity
 - Reproductive toxicity
 - Developmental toxicity
 - Other targeted studies (e.g., immunotoxicity)
- Within each duration type, organize by species and route of exposure (e.g., oral, inhalation, dermal, depending on expected routes of exposure)


Analysis of Hazard Information

- Look for patterns in effects data weight and strength of evidence
 - Nature of effects, target organs/systems reported in multiple studies, in multiple species
 - Did incidence/prevalence or severity of response increase with increasing dose/concentration? (examine dose-response)
 - What effects are repeatedly observed at the lowest dose/concentration?
 - Relative weighting of studies, from conservative perspective
 - Integrate observed effects with supporting information (e.g., metabolism, precursor effects)


Determination of Critical Effects

- Evidence for endpoints of high concern considered early:
 - Carcinogenicity and genotoxicity
 - look for indications of genotoxic carcinogenic mode of action in a screening context
 - Reproductive and developmental toxicity
- Author reported conclusions generally accepted
- Consider evidence for human relevance of observed effect, taking into consideration existing knowledge *in a screening context*
- If substance exposure sources are both long term and short term, and/or via multiple routes, select critical effects from appropriate studies to estimate risk from range of sources, for example:
 - if food is key source, select longer term oral study if available
 - if product involving dermal contact used occasionally, short term dermal study ideal

Determination of Critical Effect Levels

- Consider multiple endpoints across the entire database to establish critical effects and critical effect levels/Points of Departure (NO(A)ELs, LO(A)ELs, BMDs)
 - What dose causes an adverse effect on endpoint of concern?
 - Author reported effect levels generally accepted

Substances With Little Or No Data

- Use of New Approach Methodologies (NAM)
 - different data gap filling methods/approaches
 - Ideally together
- (Q)SAR models (e.g., Leadscope, DEREK)
- Analogue/Category Read-across (e.g., OECD QSAR Toolbox)
- In vitro High Throughput Screening (e.g., ToxCast, Tox21)
 - HTS assays are automated methods that allow for a large number of chemicals to be rapidly evaluated for a specific type of bioactivity at the molecular or cellular level
- Toxicogenomics
 - The study gene and protein activity within particular cell or tissue of an organism in response to toxic substances (high content)

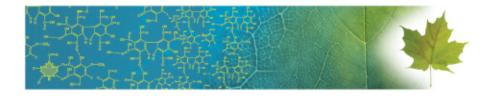
12

 Validation of alternative approaches/models critical to understand uncertainty associated with these methods

Predictive Tools for Hazard Assessment

Commercial

- CASE Ultra Tox
- DEREK Nexus
- Leadscope Model Applier
- Oasis Times
- ACD Percepta


Non-commercial

- OECD QSAR Toolbox
- Toxtree
- OncoLogic
- VEGA Caesar
- Analog Identification Methodology
 (AIM)

13

Cheminformatics tools

- Leadscope Hosted chemical data miner, clustering
- Knime cheminformatics and workflow builder

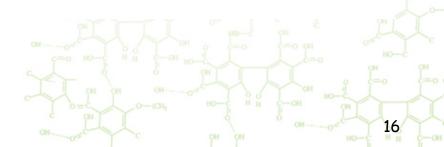
OECD QSAR Toolbox

 Freely available tool to fill missing toxicological data on substances by read across approach (<u>https://www.qsartoolbox.org/</u>)

- Read across could be carried out either by building chemical category or using an analogue
- Contains mechanism-based structure fragments (profilers)
- Has built-in simulators of mammalian metabolism
- Creates reports in different formats

OECD QSAR Toolbox

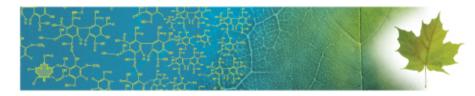
- Hosts several toxicological databases, ADME information, chemical inventories and facilitates data searching
- Currently has one Adverse Outcome Pathway (AOP) for skin sensitization....more to come in future
- Hosts several models to predict a variety of physical, chemical properties of chemicals
- Computes a variety of structural similarity indices
- Contains a large amount of background data on reaction mechanisms



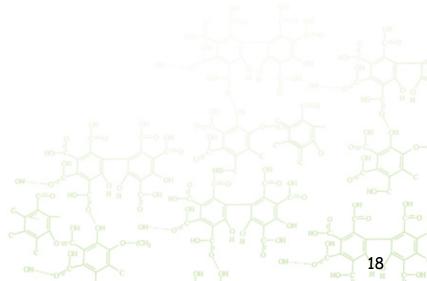
Read Across Process

	Chemical 1	Chemical 2	Chemical 3	Chemical 4	
Structure	XXXXXXXXX	XXXXXXXXX	XXXXXXXXX	XXXXXXXXX	
Property 1	• _	→ °	• _	→ °	SAR/Read-across
Property 2	•	°	° ≮	•	Interpolation
Property 3	°	•	•	°	Extrapolation
Activity 1	•	°	•	∘	SAR/Read-across
Activity 2	•	°	° ↓	•	Interpolation
Activity 3	∘↓	•	•	°	Extrapolation

• Existing data point o Missing data point

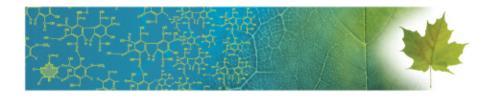


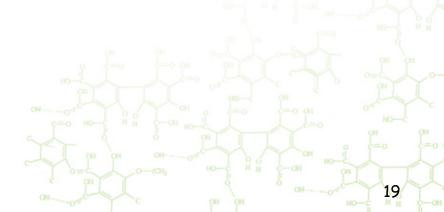
Database Uncertainties and Confidence


- Characterize uncertainties in database as a whole as well as for key studies
 - Not just data gaps, but also impact on decision making
 - Consistency of database, repeated evidence of critical effects and support around critical effect levels
 - Likelihood that effects observed in laboratory animals relevant to humans
- Statement on confidence in database
 - Greater confidence in consistent empirical data; lesser confidence when relying on alternative sources of information

- Identify what information would reduce uncertainty/increase confidence
- Uncertainties & confidence factor into risk characterization

Annex





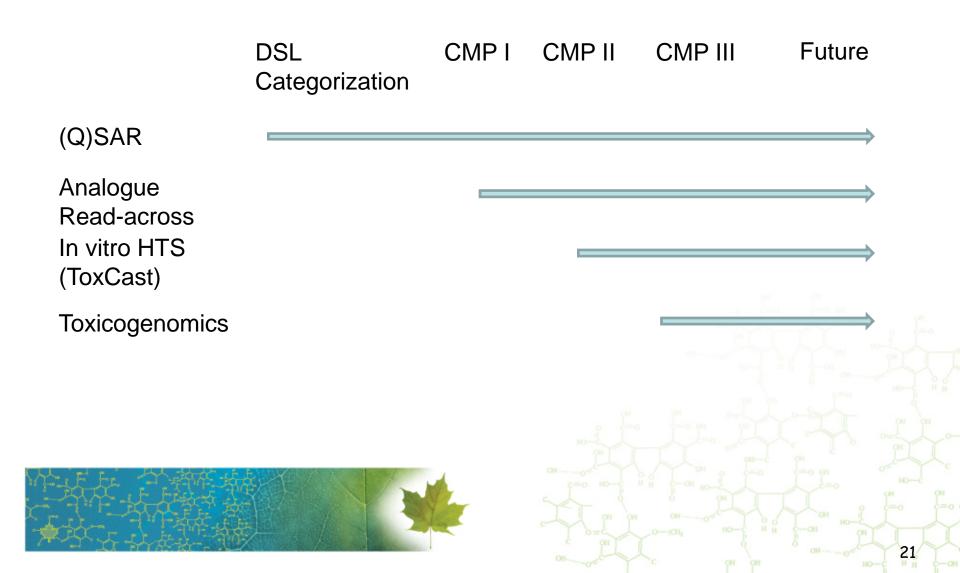
DMOB^{*} read-across example

CAS	Supporting Common Metabolite 119-90-4 of data gap fill	Member 1 2429-71-2	Member 2 2429-74-5	Member 3 6449-35-0	Member 4 67923-89-1	Member 5 70210-28-5	Member 6 71550-22-6	Member 7 75659-72-2	Member 8 75659-73-3	Member 9 75673-18-6	Member 10 75673-19-7	Member 11 75673-34-6	Member 12 75673-35-7	Member 13 75752-17-9
Experiment al result (non-GLP)	Positive S. typhimurium (TA 98; TA 100; TA 1538) with S9 (rat)	Positive S. typhimurium (TA 1538) with S9 (hamster) + FMN	Positive S. typhimurium (TA 98) with S9 (hamster) + FMN modified according to Prival et al.	Positive S. typhimurium (TA 98) with S9 (hamster) + FMN		Positive S. typhimurium (TA 98 / TA 100) with S9 (hamster) + FMN								
Integrated conclusion (eg. read- across)					Read Across overall trend of category Positive S.typhimuriu m (TA 98, 100, 1538) with reductive modifications and metabolic activation		overall trend of category Positive S.typhimuriu m (TA 98, 100, 1538) with reductive modifications	of category Positive S.typhimuriu m (TA 98, 100, 1538) with reductive modifications	overall trend of category Positive S.typhimuriu m (TA 98, 100, 1538) with reductive modifications	overall trend of category Positive S.typhimuriu m (TA 98, 100, 1538) with reductive modifications	Read Across overall trend of category Positive S.typhimuriu m (TA 98, 100, 1538) with reductive modifications and metabolic activation	Positive S.typhimuriu m (TA 98, 100, 1538) with reductive modifications	Positive S.typhimuriu m (TA 98, 100, 1538) with reductive modifications and metabolic	of category Positive S.typhimuriu m (TA 98, 100, 1538) with reductive

*3,3' Dimethoxybenzidine based direct dyes

Historical use of (Q)SAR applications

late 1990 Pilot phase screening level assessments


2000-06 DSL Categorization

Commercial (Q)SAR models; support weak datasets and analogues

Commercial (Q)SAR models; basis for decision making (prioritization)

2006-11 Ministerial Challenge Phase CMP (high priorities) Commercial and some public domain (Q)SAR models, Metabolism, Analogue identification, Read-across; basis for decision making but mainly supportive evidence

2011- CMP II (data poor substances) Commercial and public domain (Q)SAR models, Analogue identification, Readacross, Metabolism, Chemical categories, in-house models/tools **Progression in Use of Alternate Technology in Chemical Hazard Assessment**

New Approach Methodologies

